Towards Hofstadter's experiments for exotic nuclei

a novel trap of rarely-produced short-lived nuclei for electron scattering

Toshimi Suda

RI Beam Factory (RIBF) RIKEN Nishina Center JAPAN

> NIM A532 (2004) 216 PRL 100 (2008) 164801. PRL 101 (2009) 102501.

RIKEN RI Beam Factory (RIBF)

primary beam: p - U (350 AMeV, $\beta \sim 0.7$)goal intensity: I puA (~6x10^{12} particle/s)

Size and shapes of exotic nuclei

	size shape	
proton	isotope shift	electron scattering
neutron	reaction cross section	proton scattering

An example of charge distribution for exotic nuclei

E. Khan et al. : NP A800 (08) 37.

electron scattering for short-lived nuclei

key : luminosity

 $L = 10^{26} / cm^2 / s$

Ee = 200 MeV 1 week $\Delta \theta$ = 1 deg. $\Delta \phi$ = 90 deg.

Sn isotopes

How to realize electron scattering experiments off short-lived Radioactive Isotopes (RI) ?

SCRIT@RI Beam Factory

SCRIT (Self-Confining RI Target)

"lon trapping" phenomena observed at electron rings

V ~ -20 V @ 100 mA

ionized residual gases by electrons are trapped by electron beam itself.

the trapped ions kick out electrons ---> shorter beam lifetime

electron scattering !!

precise position control -> higher luminosity fast ion manipulation -> short-lived nuclei

NIM A532 (2004) 216

Time sequence of the measurement

beam lifetime of KSR $\tau \sim 100 \text{ s} @ 80 \text{ mA}$

electron scattered from the trapped Cs ions

Angular distribution of elastic events

$$\mathbf{N}(heta) = \mathbf{L} rac{\mathbf{d}\sigma}{\mathbf{d}\Omega} \cdot \mathbf{T} \int \mathbf{d}\mathbf{v} \mathbf{\Delta} \mathbf{\Omega}(heta, \mathbf{v})$$

L=1.2 x 10^{26} /cm²/s @ I_e = 80 mA (Ne=5x10¹⁷ /s)

Nion(*on e-beam*) ~ 10⁶

T. Suda et al., PRL 101 (2009) 102501.

Behaviors of the trapped ions in SCRIT

 T_{ION} vs. I_e

elastic event rate in 50ms

e-RI facility at RIBF

Electron ring (AURORA) : donated from Sumitomo

Currently under installation Operation in 2010

e-RI facility at RIBF

AURORA : under installation operation : 2010

Expected luminosity at AURORA

	KSR (120 MeV)	AURORA	AURORA/KSR
le (mA)	80	≥ 300	4
Nion	1	> 10	>10
au ion (ms)	120	much longer	
Nion for L=10 ²⁶ /cm ² /s	106	< 104	

At least, -10² larger luminosity will be easily achievable.
longer measuring time (typically 1 week <==> 5 hours KSR) -10
lower-emittance ion beam, better ion manipulation ... x 10^α

Summary & Outlook

SCRIT scheme

 A SCRIT prototype using (stable) ¹³³Cs ions completely mimicking short-livd nuclei (~50 ms trapping)
feasibility has been confirmed by R&D studies at KSR L = 1.2 x 10²⁶ /cm²/s with N_{ion} ~ 10⁶ at 80 mA

e-RI facility at RIKEN RIBF

Slow RI beams

ISOL based on e (γ) + U fission : under construction fragment separator + gas catcher : under discussion Electron beam electron ring (AURORA) is being installed. Operation in the next year. $E_e = 200 - 300 \text{ MeV}$, $I_e \sim 300 \text{ mA}$, $\tau_e \sim 300 \text{ min}$

A door to e-RI scattering experiment is being opened.